8th International Conference Digital Technologies in Education, Science and Industry 6-7 Almaty, Kazakhstan

BIG DATA, CYBER SECURITY AND PRIVACY ISSUES IN SMART GRID SYSTEMS

Prof. Dr. Şeref SAĞIROĞLU Gazi University Computer Engineering Department, Ankara, Türkiye ss@gazi.edu.tr

CONTENTS

8th International Conference Digital Technologies in Education, Science and Industry

- -Smart grid world
- Perspectives
 - cyber security
 - big data and
 - privacy
- BD, CS, and Privacy Issues in SG
 Conclusion

Source: NIST, Smart Grid Conceptual Model

SMART GRID SYSTEMS

Source: ITU Symposium-ICT, May 30, 2012

EXPECTATIONS FROM SMART GRID

- reducing cost in production & distribution
- data driven pricing for consumption
- better monitoring and control
- using more facilities of recent developments
- supporting high quality services
- planning the changing demands of electricity consumption,
- handling features of reliable, efficient, clean and sustainable management

EXPECTATIONS FROM SMART GRID

- save more money over next decade
- provide secure communication
- more benefit and income
- reducing CO₂
- supporting EU Green Deal
- producing more renewable energy
- reducing energy consumption

EXPECTATIONS FROM SMART GRID

SMART GRID WORLD

DATA AND BEYOND

BIG DATA 5 V'S

Volume : Number of records

Velocity : The frequency of data generation or transfer
Variety : Large diversity of data sources, formats and multidimensional fields
Veracity : The quality and reliability of data

- Value : Insights and benefits from data
 - Viscosity
 - Virality
 - Visulisation
 - Variability
 - Validity

- Venue
- Vocabulary
- Vagueness
- Vulnerability
- ...

Source: BDAs in SGs: State-of-the-Art, Challenges, Opportunities, and Future Directions, IET Generation, Transmission and Distribution

BIG DATA PROCESS

BIG DATA PROCESS IN SMART GRID

Zhang,Y.,Huang,T.&Bompard,E.F. Big data analytics in smart grids: a review. Energy Inform, 8. https://doi.org/10.1186/s42162-018-0007-5

BIG DATA ISSUES IN SMART GRID

Source: BDAs in SGs: State-of-the-Art,-Challenges, Opportunities, and Future Directions, IET Generation, Transmission and Distribution

Smart Grid Data Analytics

Privacy means different things in different countries and regions; serious problem on internet;

- Bodily privacy
- Communication privacy
 - against eavesdropping
 - electronic communication privacy
- Identity privacy
 - anonymity
- Data privacy
 - rights to control collection, uses & dissemination of non-public personal info

Source: Data Privacy, Michael I. Shamos, Institute for Software Research School of Computer Science Carnegie Mellon University

Threats to privacy violation increase:

- Residential load profile
- Reveal our lifestyle from load signature (Refrigerator, Kettle, Washing machine, Toaster, Television, etc.)
 - Load profile
 - User profile
 - Health profile

- Attackers/criminals can use data to find out many weaknesses.
- Health companies can determine which medical device needed
- Insurance companies can provide different insurance rate
- House holders can predict how many people live in a house
- Privacy

(shower, values, preferences, time out, etc.)

There are solutions:

- Data encryption
- Electronic signature
- Message authentication
- ICT solutions
- Anonymization

but

- Anonimized data
- Encrypted data

How do we understand cyber world?

Resource: http:// www. physorg.com/news151162452.html

THOUGHTS FROM FRONTIERS

- "Cyber crime is the most dangerous threat for companies" IBM President, CEO: Ginni Rometty
- "Cyber Security is Number One Problem"
- "Cyber attacks are more dangerous than nuclear weapons"
 Warren Buffett, Businessman
- "Cyber-Security is much more than a matter of IT, it takes 20 years to build a reputation and few minutes of cyber incident to ruin it."

Stephane Nappo. Global Cyber Security Officer

LIVING IN A WAR

VULNERABILITIES USED

Source: KARSPERSKY

MATHS FOR CYBER SECURITY

CYBER SECURITY

SMART GRID CYBER SECURITY

- Power Grid
 - Huge, critical, high-cost infrastructure
- ICT based systems
 - real-time monitoring
 - communication, processing, storage,
 - advanced analytics
 - fully automated systems (self-healing, Al based system)
 - also vulnerable

SMART GRID VULNERABILITIES

- Personal/enterprise information assets
- Vulnerable, under attack
- Target
- Not secure
- Privacy violation possible
- Require protection
- Support privacy

PRIORITY AREAS (NIST)

- Demand Response and Consumer Energy Efficiency
- Transportation Electrification
- Renewable Power Generation
- Energy Storage
- Advanced Metering Infrastructure
- Distributed Grid Management
- Wide-Area Situational Awareness
- Network Communications
- Cyber Security

VULNERABILITIES CLASSIFICATION

Source: NIST reference model for the smart grid

SG CYBER SECURITY STANDARDS

Source: https://www.cenelec.eu/aboutcenelec/whatwedo/technologysectors/smartgrids.html

CYBER SECURITY CONCERNS

CYBER SECURITY CONCERNS

CYBER SECURITY CONCERNS

TYPE OF VULNERABILITIES (Threats/Attacks)

Type of Threat/Attack
Tampering
Replay
Eavesdropping
Network monitoring, discovery and analysis
DoS
Spoofing
Intrusion attacks
Insider attack
Man in the middle
Viruses, Spyware, Trojans and Worms
Origin Disguise
Theft
Trapdoor
Keylogging

Type of Threat/Attack
Resource Exhaustion
Phishing
XSS
Operating system command injection
Path traversal
Web compromise
Buffer overflow
Physical intrusion
Information disclosure
Social engineering attacks
User compromise
Root compromise

SUPPORTING SMART GRID

CHALLENGES IN SMART GRID SYSTEMS

- Providing high quality service
- Cost effective operation
- Developing better and faster solutions to problems
- Managing network effectiently, securely, optimally, intelligently
- Security and Privacy
- Gaining new values from information assets

- Big Data Analytics, Data analytics
- develop new solutions for designing and developing better SG systems and services
- new improved services for customers & operators
- manage systems intelligently, effectively and securely
- reduce cost
- Plan better and handle to predict demands

- handling data properly might be an opportunity for consumers, operators, service providers, markets, industries
- Data collection, integration, and sharing policies among companies, institutions, government unit are important
- companies and governments can benefit from BDA not only for SG but also other industrial best practices.

- data-driven solutions can be achieved for energy awareness, green&renewable energy, SG, electric power systems, etc. using BDA
- Support EU Green Deal Agreement
- Improve perspective not only for security & privacy issues but also other issues
- Cloud systems are required

- IEEE, ITU, NIST, ISO, CENELEC provide plausible solutions to secure SGs
- Violations increase, but also solutions
 - AI, DL, and ML models provide better solutions but also bring new problems
 - Attacks on DL, AI, and ML models possible
 - require quality of data for better modeling
 - GDPR, DPA, or National DPR issues
 - Privacy-Preserving Big Data Publishing
 - Differential Privacy Solutions

Prof. Dr. Seref SAGIROGLU ss@gazi.edu.tr