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Artificial Intelligence

Algorithms that mimic the
intelligence of humans,
able to resolve problems in
ways we consider “smart”.
From the simplest to most
complex of the algorithms.

Machine Learning

Algorithms that parse data,
learn from it, and then apply
what they’ve learned to make
informed decisions. They use
human extracted features
from data and improve with
experience.

Deep Learning

Neural Network algorithms that learn the
important features in data by themselves.
Able to adapt themselves through
repetitive training to uncover hidden
patterns and insights.



Expert Systems

Mathematical formulations
(e.g., Mixed Integer
linear programming)

e.g., [2] 3]

Teaching-learning
based optimization
[119]

Simulated
annealing

[47], [84], [85], [124]

Tabu search | |

[86]. [87]

Genetic
algorithms
[6]. [8]. [48]. [69], [70], [71],
[72], [77], [78], [79], [80],
[90], [91], [92], [93], [94],
[110], [111], [112], [113],
[114], [118], [116], [120]

Ant colony
optimization

Breadth-first

Knowledge-based,
reasoning and

Learning
probabilistic
methods

[101, (e8], [118]

Bayesian learning

Maximum
a posteriorl
learning

search —

(2], [3]

Local search
algorithms
and
metaheuristics

Search methods
and
optimization
theory

Artificial intelligence
techniques

(71, 9], [74), [81), ||
_[82], [80], [109]
Artificlal bee
colony algorithm H
(78] Game theory
Gravitational search Swarm e [10]’ [11], [12]
algorithm | intelligence
[7€]
Fire-Fl =
algomh{n . Statistical models
[76] f T
Poate s Bayesian networks | Hldden[l;n:]n([;\é]models ‘

optimization [~
(73]

[19], [46], [55], [96].
[108]

|
Kalman flitering
[21]. [22]

planning methods
[13], [14], [15], [16],

[17], [18], [94], [97],
[99], [100], [101]

Learning
methods

Machine
learning

Decision-making

algorithms

_ Supervlsed

Expectation-
maximization

[23], [30], [32],
[48], [55]
Maximum-likellhood
learning
[23], [31], [32],
(48], [54], [55]

Neural networks
[33], [39], [51], [52],
[53), [88), [89),
[95], [102], [107],
[1 08], [117], [121], [128]
Support vector machines ‘
[53], [56], [58]. [39]
LInear regresslon
[38], [49], [50]
Loglstic regression
[30]
Random forests
(371
Instance-based learning

(e.g., K-nearest neighbors/
case-based reasoning)

[34], [35], [36], [48], [57], [83]

Unsupervised
learning

- analysis
[ [89]
L Clustering K-means
[40], [42], [75], [96]

Principal component ‘

Markov decision processes
[24], [25], [26], [122], [127]

Relnforcement
learning

Q-learning

[ [45], [104], [105], [107]

L Learning automata

[103]



Machine Learning




Training data

Prediction

; 0.83

likety to be a Van Gogh

Discriminative prediction
model




" Training data 'Generated samples

training Generative sampling

model

Random noise

i An
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December 15, 2017 6.38am GMT

Artist impression of Kepler-90i, the eighth planet discovered orbiting around Kepler-90

Email Two new exoplanets have been discovered thanks to NASA's collaboration with Google’s
W Twitter 52 artificial intelligence (AI). One of those In today’s announcement is an eighth planet -

K Facebook 157 Kepler-90i1 — found orbiting the Sun-like star Kepler-90. This makes it the first system
in Linkedin discovered with an equal number of planets to our own Solar system.

& Print

A mere road trip away, at 2,545 light-years from Earth, Kepler-90i orbits its host star every

14.4 Earth days, with a sizzling surface temperature similar to Venus of 426°C.

The new exoplanets are added to the growing list of known worlds found orbiting other

stars.



i Health & Medicine

Al Can Diagnose Heart Disease and Lung
Cancer More Accurately Than Doctors

f ¥ 3
A pair of recently developed Al systems can diagnose lung cancer and heart disease
more accurately than human doctors. These Als have the potential to save billions

of dollars and countless lives if widely adopted.

Kyree Leary
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Examples of images generated by training a generative adversarial network (GAN) with portraits from the last
500 years of Western art. The distorted faces are the algorithm's attempts to imitate those inputs. Images
generated at Art & Artificial Intelligence Laboratory, Rutgers.
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Generative Al Applications
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Discriminative Generative

* Discriminative Model * Generative Model
” plylx) p(x,y)
iaed xr

:'-;\T\\' y =0 L g r\.\,"\.
[0 21 0



Veri kiimesi ={(1,0), (1,0), (2,0), (2,1) }

Ayirt edici model p(y|x)’i 6grenir.

x verildiginde y’'nin olasiligi (probability of y given x)

y=0 y=1
x=1 1 0
x=2 ) ¥

Ayirt edici modeller sartli olasiligi hesaplar




Veri kimesi = {(1,0), (1,0), (2,0), (2,1) }

Uretici model p(x,y)'i 6grenir.

x ve y'nin birlikte olasihgi (probability of x and y)

y=0 y=1
x=1 Y 0
x=2 Ya Va

Uretici modeller birlikte gelme olasiliklarini hesaplar




1980S-ERA NEURAL NETWORK
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Links carry signals
from one node
to another, boosting
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link's 'weight'.

DEEP LEARNING NEURAL NETWORK

Multiple hidden layers
process hierarchical features
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GENERATIVE MODELS

e Autoencoders
e Adversarial Networks

* Sequence Models



Autoencoders

ENCODE> DECODE>

hidden




Adversarial Networks

forward propagation
(generation and classification)

The generative network The discriminative network
is trained to maximise the is trained to minimise the
final classification error o o final classification error

GENERATIVE DISCRIMINATIVE
NETWORK NETWORK

) ' d The ﬁenerated distribution The classification error
npu .mb'} om and the true distribution are is the basis metric for the
s not compared directly training of both networks




Sequence Models

Er liebte 2zu essen

A A A AA

Softmax

tncoder [IDCIDCIPCIDT] ) S ) A)ﬁ)A)ﬁ)A Decoder

A AN A A A AN AN A A
Embed NULL Er liebte 2u essen
A AN AN A A

He loved to eat




ChatGPT

[) Generative pretraining
2) Supervised fine-tuning

3) Reinforcement learning from human feedback



| am learning about
“ ChatGPT right now. ,,
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lam Iearni.ng about As a result, | now have a better understanding
GPTChat right now of how ChatGPT works and what it can do.
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INITIAL MODEL
TRAINED WITH
SURERVISED
-TUNING



7
GIUMAN WRITES PROMPT

e.g. What is a car? )

Q—IUMAN ANSWERS PROMPT

e.g. A vehicle moving on wheels)

.




REWARD MODEL

Human writes prompt.
e.g. What is a car?

A B C D
0.98 0.43 0.56 0.13

A>C>B>D



OPTIMIZING A POLICY
AGAINST THE REWARD
MODEL

PPO: Proximal Policy Optimizer



Image inputs
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Separate models for thousands of tasks




How Cheap Labor Drives China’s A.I
Ambitions

5 Grathisaida | > []  CJa7

e m—— -.u-'—

tﬂnﬁﬁm DEEIE"

~ TS s CEyemme v o —— L E—

Workers at the headquarters of Ruijin Technology Company in Jiaxian, in central China’s Henan Province, They identify objects in
images to help artificial intelligence make sense of the world. Yan Cong for The New York Times



Optical Adversarial Attack Can Change the
Meaning of Road Signs




“panda” “gibbon”

57.7% confidence 90.3% confidence
An image of a panda, when

combined with an adversarial input, can convince a classifier that i1t’s looking at a gibbon. IMAGE:
OPENAI



Figure 1: We create an adversarial patch that is successfully
able to hide persons from a person detector. Left: The per-
son without a patch is successfully detected. Right: The
person holding the patch is ignored.



